Here, we continue the problem from
last time.
Recall
$$C_{\mathcal{C}}(x) = \{y \in E : d(x, y) \leq e\}$$
 is a
closed ball of radius ε contened at x
Def: E is totally bounded if $\forall \varepsilon > 0$, $\exists n \in \mathbb{N}$
and $x_1, ..., x_n$ such that $E = \bigcup_{i=1}^{n} C_{\mathcal{C}}(x_i)$
Note: $S \subset \mathbb{R}^n$, S is bounded $\Rightarrow S$ is totally bounded.
where $n \in \mathbb{N}$ is finite.
Example: $E = \{f: [0,1] \mapsto [0,1]\}$.
 $d(f,g) = l.u.b\{|f(x) - g(x)|: x \in [0,1]\}$
 $Q: Is d(f,g) = 0 \quad \forall$
 $1) \quad d(f,g) = 0 \quad \forall$
 $2) \quad d(f,g) = 0 \quad \forall$
 $3) \quad d(f,g) = |f(x) - g(x)| = |g(x) - f(x)| = d(g,f)$
 $4) \quad f, g, h \in E$.
 $|f(x) - h(x)| = |f(x) - g(x) + g(x) - h(x)|$

$$\leq |f(x) - g(x)| + |g(x) - h(x)|$$

$$\leq d(f,g) + d(g,h)$$
then $d(f,g) + d(g,h)$ is an upper bound
of set $f(f(x) - h(x)) = x \in [0,1]$.
$$since d(f,h)$$
is the $l.u.b$ of this set,
 $d(f,h) \leq d(f,g) + d(g,h)$.
Thus, $d(f,g)$ is a distance.

Claim E is bounded. Indeed,
$$f_0(x) = 0$$

 $E \subset B_2(f_0)$ since $|f(x) - f_0(x)| = |f(x)| \le 1$
 $\forall f(x) \in E$, then $d(f, f_0) \le 1 < 2$.

Suppose we have
$$f_n \in E$$
, $n \in \mathbb{N}$, such that
 $d(f_i, f_j) = 1$, $\forall i \neq j$.
Assume $E \subset \bigcup_{k=1}^{j} C_{y_3}(g_k)$, if f_{n_1} and $f_{n_2} \in C_{y_3}(g_{k_0}) \Rightarrow d(f_{n_1}, f_{n_2}) \leq d(f_{n_1}, g_{k_0}) + d(g_{k_0}, f_{n_2})$

$$\leq \neq + \neq = = =$$
 This contradicts with $d(f_i, f_j) = 1$.

Now, suppose
$$f_n : [o, 1] \mapsto [o, 1]$$
, $d(f_k, f_j) = 1$
if $k \neq j$.
 $f_n(x) = \int 0$, if $x \neq \frac{1}{n}$
 $i , j \neq x = \frac{1}{n}$
So $d(f_i, f_j) = 1$, $\forall i \neq j$.
So, \tilde{E} is bounded but not totally bounded.

Exercise: E is complete and totally bounded,
then E is compact.
proof By contradiction, let assume E is
totally bounded and complete, but not
compact.
Let
$$E = \bigcup_{i \in I} u_i$$
, since E is not compact.
 $E \neq \bigcup_{k=1}^{n} U_{ik}$, for any n and i_i, i_2, \dots, i_n .

Since
$$E$$
 is totally bounded, $\exists x_{i}^{(r)}, \dots, x_{n_{r}}^{(r)}$
s.t. $E = \bigcup_{j=1}^{n_{r}} C_{X_{j}}(x_{j}^{(r)})$.

when r = 1, \exists i: s.t. $A_1 = C_1(X_{i_1}^{(1)})$ is not included in a finite union of U_i when r=z, $A_1 \subset E = \bigcup_{\substack{n_2 \\ J=1}} C_{k_2}(X_j^{(p)})$ $\Rightarrow A_1 = \bigcup_{\substack{n_2 \\ J=1}}^{n_2} (C_{k_2}(X_j^{(p)}) \cap A_1)$ Then, \exists i_2 , s.t. $A_z = C_{k_2}(X_{i_2}^{(p)}) \cap A_1$ is not included in a finite union of U_i

I am constructing An such that
$$A_{n+1} \subset A_n$$

and each An is closed. If $x, y \in A_n \subset C_n(X_{i_n}^{(n)})$, $d(X, y) \leq 2 \cdot \frac{1}{n} = \frac{2}{n}$
Let $X_n \in A_n$, $\Gamma \geq S \Rightarrow X_r \in A_r \subset A_s$
 $X_s \in A_s$
 $\Rightarrow d(X_r, X_s) \leq \frac{2}{s} \Rightarrow X_n$ is Cauchy.

Since E is complete, $\chi_n \rightarrow \chi \in E$. So, Jio EI, s.t. XE Uio Since Uio is open, 3 Ero s.t. Be(x) C Uio Select n s.t. $d(\chi_n, \chi) < \frac{\varepsilon}{2}$ and $\frac{\varepsilon}{n} < \frac{\varepsilon}{2}$ If $g \in An$ then $d[y, \chi] \leq d[y, \chi_n] + d(\chi_n, \chi)$ $< \frac{2}{n} + \frac{2}{2} < \varepsilon$. Thus, $An \subset U_{io}$ This contradicts with An cannot be covered by finite union of Ui.

Limits

Obs: If
$$\mathcal{X}_{0}$$
 is a cluster point of E and
 $f: E \mapsto E'$ (or $E - \{\mathcal{X}_{0}\} \mapsto E'$), then
if $\lim_{X \to X_{0}} f(x)$ exits. it is unique.

proof Assume
$$G = \lim_{x \to \infty} f(x)$$
 and $G' = \lim_{x \to \infty} f(x)$.

Motation $S \subseteq E$, x_0 is cluster point in S. $\lim_{\substack{X \to x_0 \\ x \in S}} f(x)$ $\underset{x \to \alpha^+}{\underset{x \to$